供需对接 » 技术文库  »  电子电器制造  »  光电/LED器件 » 正文

半导体制程设备_扩散(炉)

分类: 光电/LED器件来源:百度文库作者:百度文库发布时间:2017-11-01关键字:半导体  半导体制程设备  扩散(炉)
半导体材料可搀杂n型或p型导电杂质来调变阻值,却不影响其机械物理性质的特点,是进一步创造出p-n接合面(p-n junction)、二极管(diode)、晶体管(transistor)、以至于大千婆娑之集成电路(IC)世界之基础。而扩散是达成导电杂质搀染的初期重要制程。

  (二)扩散(炉) (diffusion)

  1、扩散搀杂

  半导体材料可搀杂n型或p型导电杂质来调变阻值,却不影响其机械物理性质的特点,是进一步创造出p-n接合面(p-n junction)、二极管(diode)、晶体管(transistor)、以至于大千婆娑之集成电路(IC)世界之基础。而扩散是达成导电杂质搀染的初期重要制程。

  众所周知,扩散即大自然之输送现象 (transport phenomena);质量传输(mass transfer)、热传递(heat transfer)、与动量传输 (momentum transfer;即摩擦拖曳) 皆是其实然的三种已知现象。本杂质扩散即属于质量传输之一种,唯需要在850oC以上的高温环境下,效应才够明显。

  由于是扩散现象,杂质浓度C (concentration;每单位体积具有多少数目的导电杂质或载子)服从扩散方程式如下:

  这是一条拋物线型偏微分方程式,同时与扩散时间t及扩散深度x有关。换言之,在某扩散瞬间 (t固定),杂质浓度会由最高浓度的表面位置,往深度方向作递减变化,而形成一随深度x变化的浓度曲线;另一方面,这条浓度曲线,却又随着扩散时间之增加而改变样式,往时间无穷大时,平坦一致的扩散浓度分布前进!

  既然是扩散微分方程式,不同的边界条件(boundary conditions)施予,会产生不同之浓度分布外形。固定表面浓度(constant surface concentration) 与固定表面搀杂量 (constant surface dosage),是两种常被讨论的具有解析精确解的扩散边界条件。

  2、前扩散 (pre-deposition)  第一种定浓度边界条件的浓度解析解是所谓的互补误差函数(complementary error function),其对应之扩散步骤称为「前扩散」,即我们一般了解之扩散制程;当高温炉管升至工作温度后,把待扩散晶圆推入炉中,然后开始释放扩散源 (p型扩散源通常是固体呈晶圆状之氮化硼【boron-nitride】芯片,n型则为液态POCl3之加热蒸气) 进行扩散。其浓度剖面外形之特征是杂质集中在表面,表面浓度最高,并随深度迅速减低,或是说表面浓度梯度 (gradient) 值极高。

  ​3、后驱入 (post drive-in)

  第二种定搀杂量的边界条件,具有高斯分布 (Gaussian distribution) 的浓度解析解。对应之扩散处理程序叫做「后驱入」,即一般之高温退火程序;基本上只维持炉管的驱入工作温度,扩散源却不再释放。或问曰:定搀杂量的起始边界条件自何而来?答案是「前扩散」制程之结果;盖先前「前扩散」制作出之杂质浓度集中于表面,可近似一定搀杂量的边界条件也! 至于为什么扩散要分成此二类步骤,当然不是为了投数学解析之所好,而是因应阻值调变之需求。原来「前扩散」的杂质植入剂量很快达到饱和,即使拉长「前扩散」的时间,也无法大幅增加杂质植入剂量,换言之,电性上之电阻率 (resistivity) 特性很快趋稳定;但「后驱入」使表面浓度及梯度减低(因杂质由表面往深处扩散),却又营造出再一次「前扩散」来增加杂质植入剂量的机会。所以,借着多次反复的「前扩散」与「后驱入」,既能调变电性上之电阻率特性,又可改变杂质电阻之有效截面积,故依大家熟知之电阻公式 ; 其中 是电阻长度可设计出所需导电区域之扩散程序。

  4、扩散之其它要点,简述如下:

  (1)扩散制程有批次制作、成本低廉的好处,但在扩散区域之边缘所在,有侧向扩散的误差,故限制其在次微米 (sub-micron) 制程上之应用。

  (2)扩散之后的阻值量测,通常以四探针法(four-point probe method)行之。目前市面已有多种商用机台可供选购。

  (3)扩散所需之图形定义(pattern)及遮掩(masking),通常以氧化层(oxide)充之,以抵挡高温之环境。一微米厚之氧化层,已足敷一般扩散制程之所需。